Conditional Properties
In each statement, if the test expression is true, then the conclusion expression is also assumed to be true. Conditional properties are used to prove theorems.
if △ABC ∼ △DEF, then m∠ABC = m∠DEF
if △ABC ∼ △DEF, then m∠BCA = m∠EFD
if △ABC ∼ △DEF, then m∠CAB = m∠FDE
if △ABC ∼ △DEF, then (distance CB) / (distance FE) = (distance CA) / (distance FD)
if △ABC ∼ △DEF, then (distance CA) / (distance FD) = (distance BC) / (distance EF)
if △ABC ∼ △DEF, then (distance AC) / (distance DF) = (distance AB) / (distance DE)
if △ABC ∼ △DEF, then (distance CA) / (distance FD) = (distance AB) / (distance DE)
if △ABC ∼ △DEF, then (distance AB) / (distance DE) = (distance BC) / (distance EF)
if △ABC ∼ △DEF, then (distance BA) / (distance ED) = (distance CA) / (distance FD)
if △ABC ∼ △DEF, then (distance CA) / (distance FD) = (distance CA) / (distance FD)
if △ABC ∼ △DEF, then (distance CA) / (distance FD) = (distance BA) / (distance ED)
if △ABC ∼ △DEF, then (distance BC) / (distance EF) = (distance CA) / (distance FD)
if △ABC ∼ △DEF, then (distance ED) / (distance BA) = (distance DF) / (distance AC)
if △ABC ∼ △DEF, then (distance DF) / (distance AC) = (distance FE) / (distance CB)
if △ABC ∼ △DEF, then (distance FD) / (distance CA) = (distance EF) / (distance BC)
if △ABC ∼ △DEF, then (distance EF) / (distance BC) = (distance DE) / (distance AB)
if △ABC ∼ △DEF, then (distance EF) / (distance BC) = (distance DF) / (distance AC)
if △ABC ∼ △DEF, then △ACB ∼ △DFE
if △ABC ∼ △DEF, then △BCA ∼ △EFD
if △ABC ∼ △DEF, then △DEF ∼ △ABC
if (△ABC ∼ △DEF) and (△DEF ∼ △XYZ), then △ABC ∼ △XYZ
if (△ABC ∼ △DEF) and (△XYZ ∼ △DEF), then △ABC ∼ △XYZ
if △ABC ≅ △DEF, then △ABC ∼ △DEF
if (points A B and C are collinear) and (distance AC > distance BC), then m∠ABC = 180
if (m∠ABC = m∠CDA) and (m∠BCD = m∠DAB), then quadrilateral ABCD is convex
if ABCD is a rectangle, then quadrilateral ABCD is convex
if ABCD is a parallelogram, then quadrilateral ABCD is convex
if quadrilateral ABCD is convex, then point A lies in interior of ∠BCD
if quadrilateral ABCD is convex, then point B lies in interior of ∠CDA
if quadrilateral ABCD is convex, then point C lies in interior of ∠DAB
if ∠ABC is a right angle, then tangent of (m∠BCA) = (distance AB) / (distance BC)
if ∠ABC is a right angle, then sine of (m∠BCA) = (distance AB) / (distance AC)
if ∠ABC is a right angle, then cosine of (m∠BCA) = (distance BC) / (distance AC)
Pages:
19
20