Proof: Substitute First Term
Let's prove the following theorem:
if the following are true:
- (a + b) + c = d
- a = e
then (e + b) + c = d
Proof:
Given
1 | (a + b) + c = d |
---|---|
2 | a = e |
# | Claim | Reason |
---|---|---|
1 | (a + b) + c = a + (b + c) | (a + b) + c = a + (b + c) |
2 | (b + c) + a = a + (b + c) | (b + c) + a = a + (b + c) |
3 | a + (b + c) = (a + b) + c | if (a + b) + c = a + (b + c), then a + (b + c) = (a + b) + c |
4 | (b + c) + a = (a + b) + c | if (b + c) + a = a + (b + c) and a + (b + c) = (a + b) + c, then (b + c) + a = (a + b) + c |
5 | (b + c) + a = d | if (b + c) + a = (a + b) + c and (a + b) + c = d, then (b + c) + a = d |
6 | (b + c) + e = d | if (b + c) + a = d and a = e, then (b + c) + e = d |
7 | e + (b + c) = d | if (b + c) + e = d, then e + (b + c) = d |
8 | (e + b) + c = e + (b + c) | (e + b) + c = e + (b + c) |
9 | (e + b) + c = d | if (e + b) + c = e + (b + c) and e + (b + c) = d, then (e + b) + c = d |
Comments
Please log in to add comments