Proof: Reorder Terms 3
Let's prove the following theorem:
if ((a + b) + c) + e = ((a + b) + g) + h, then ((a + b) + c) + e = ((a + g) + b) + h
Proof:
Given
1 | ((a + b) + c) + e = ((a + b) + g) + h |
---|
# | Claim | Reason |
---|---|---|
1 | ((a + b) + g) + h = ((a + g) + b) + h | ((a + b) + g) + h = ((a + g) + b) + h |
2 | ((a + b) + c) + e = ((a + g) + b) + h | if ((a + b) + c) + e = ((a + b) + g) + h and ((a + b) + g) + h = ((a + g) + b) + h, then ((a + b) + c) + e = ((a + g) + b) + h |
Comments
Please log in to add comments