Proof: Do Append 9
Let's prove the following theorem:
result of appending
[4, 7]
to [ ] = [ [4, 7]
, [ ] ]Proof:
# | Claim | Reason |
---|---|---|
1 | result of appending [4, 7] to [ ] = reverse of [ [4, 7] , reverse of [ ] ] |
result of appending [4, 7] to [ ] = reverse of [ [4, 7] , reverse of [ ] ] |
2 | reverse of [ ] = [ ] | reverse of [ ] = [ ] |
3 | [ [4, 7] , reverse of [ ] ] = [ [4, 7] , [ ] ] |
if reverse of [ ] = [ ], then [ [4, 7] , reverse of [ ] ] = [ [4, 7] , [ ] ] |
4 | reverse of [ [4, 7] , reverse of [ ] ] = reverse of [ [4, 7] , [ ] ] |
if [ [4, 7] , reverse of [ ] ] = [ [4, 7] , [ ] ], then reverse of [ [4, 7] , reverse of [ ] ] = reverse of [ [4, 7] , [ ] ] |
5 | reverse of [ [4, 7] , [ ] ] = [ [4, 7] , [ ] ] |
reverse of [ [4, 7] , [ ] ] = [ [4, 7] , [ ] ] |
6 | reverse of [ [4, 7] , reverse of [ ] ] = [ [4, 7] , [ ] ] |
if reverse of [ [4, 7] , reverse of [ ] ] = reverse of [ [4, 7] , [ ] ] and reverse of [ [4, 7] , [ ] ] = [ [4, 7] , [ ] ], then reverse of [ [4, 7] , reverse of [ ] ] = [ [4, 7] , [ ] ] |
7 | result of appending [4, 7] to [ ] = [ [4, 7] , [ ] ] |
if result of appending [4, 7] to [ ] = reverse of [ [4, 7] , reverse of [ ] ] and reverse of [ [4, 7] , reverse of [ ] ] = [ [4, 7] , [ ] ], then result of appending [4, 7] to [ ] = [ [4, 7] , [ ] ] |
Comments
Please log in to add comments