Proof: Transitive Property of Equality Variation 4
Let's prove the following theorem:
if the following are true:
- a = b
- c = a
then b = c
Proof:
Given
1 | a = b |
---|---|
2 | c = a |
# | Claim | Reason |
---|---|---|
1 | b = a | if a = b, then b = a |
2 | a = c | if c = a, then a = c |
3 | b = c | if b = a and a = c, then b = c |
Comments
Please log in to add comments