Proof: Angle to Self

Let's prove the following theorem:

if m∠BDA = 180 and m∠CEA = 180, then m∠BAE = m∠CAD

B A C D E

Proof:

View as a tree | View dependent proofs | Try proving it

Given
1 m∠BDA = 180
2 m∠CEA = 180
Proof Table
# Claim Reason
1 m∠DAE = m∠BAE if m∠BDA = 180, then m∠DAE = m∠BAE
2 m∠EAD = m∠CAD if m∠CEA = 180, then m∠EAD = m∠CAD
3 m∠DAE = m∠EAD m∠DAE = m∠EAD
4 m∠EAD = m∠BAE if m∠DAE = m∠EAD and m∠DAE = m∠BAE, then m∠EAD = m∠BAE
5 m∠BAE = m∠CAD if m∠EAD = m∠BAE and m∠EAD = m∠CAD, then m∠BAE = m∠CAD

Comments

Please log in to add comments