Proof: Congruent Triangle Transitive Property
Let's prove the following theorem:
if △ABC ≅ △GEF and △DEF ≅ △GEF, then △ABC ≅ △DEF
Proof:
Given
| 1 | △ABC ≅ △GEF |
|---|---|
| 2 | △DEF ≅ △GEF |
| # | Claim | Reason |
|---|---|---|
| 1 | △GEF ≅ △DEF | if △DEF ≅ △GEF, then △GEF ≅ △DEF |
| 2 | △ABC ≅ △DEF | if △ABC ≅ △GEF and △GEF ≅ △DEF, then △ABC ≅ △DEF |
Comments
Please log in to add comments