Proof: Distance 3
Let's prove the following theorem:
if x = (distance AB) + (distance CD), then x = (distance DC) + (distance AB)
Proof:
Proof Table
| # | Claim | Reason |
|---|---|---|
| 1 | x = (distance CD) + (distance AB) | if x = (distance AB) + (distance CD), then x = (distance CD) + (distance AB) |
| 2 | distance CD = distance DC | distance CD = distance DC |
| 3 | x = (distance DC) + (distance AB) | if x = (distance CD) + (distance AB) and distance CD = distance DC, then x = (distance DC) + (distance AB) |
Comments
Please log in to add comments