if (distance AB) / (distance CB) = (distance BX) / (distance BA) and (distance AC) / (distance BC) = (distance CX) / (distance CA), then ((distance AB) ⋅ (distance AB)) + ((distance AC) ⋅ (distance AC)) = ((distance BC) ⋅ (distance BX)) + ((distance BC) ⋅ (distance CX))
Start from the conclusion and work back up the proof. Click the arrow to show the parents.
- ((distance AB) ⋅ (distance AB)) + ((distance AC) ⋅ (distance AC)) = ((distance BC) ⋅ (distance BX)) + ((distance BC) ⋅ (distance CX)),
if the following are true:
- a = b
- c = d
then a + c = b + d