Proof: Equal Angles 2

Let's prove the following theorem:

if m∠BXD = 180 and m∠ADX = m∠CDX, then m∠ADB = m∠CDB

D B X A C

Proof:

View as a tree | View dependent proofs | Try proving it

Given
1 m∠BXD = 180
2 m∠ADX = m∠CDX
Proof Table
# Claim Reason
1 m∠ADX = m∠ADB if m∠BXD = 180, then m∠ADX = m∠ADB
2 m∠ADB = m∠CDX if m∠ADX = m∠ADB and m∠ADX = m∠CDX, then m∠ADB = m∠CDX
3 m∠CDX = m∠CDB if m∠BXD = 180, then m∠CDX = m∠CDB
4 m∠ADB = m∠CDB if m∠ADB = m∠CDX and m∠CDX = m∠CDB, then m∠ADB = m∠CDB

Comments

Please log in to add comments