Proof: Parts of Line 3
Let's prove the following theorem:
if m∠ABC = 180, then (distance CA) + ((distance CB) ⋅ (-1)) = distance BA
Proof:
Given
| 1 | m∠ABC = 180 |
|---|
| # | Claim | Reason |
|---|---|---|
| 1 | m∠CBA = 180 | if m∠ABC = 180, then m∠CBA = 180 |
| 2 | distance CA = (distance CB) + (distance BA) | if m∠CBA = 180, then distance CA = (distance CB) + (distance BA) |
| 3 | (distance CA) + ((distance CB) ⋅ (-1)) = distance BA | if distance CA = (distance CB) + (distance BA), then (distance CA) + ((distance CB) ⋅ (-1)) = distance BA |
Comments
Please log in to add comments