Proof: Sine 3
Let's prove the following theorem:
if ∠ABC is a right angle, then sine of (m∠CAB) = (distance BC) / (distance AC)
    
    
    
    Proof:
  
      
      Given
      
    
    
      
  
  
| 1 | ∠ABC is a right angle | 
|---|
| # | Claim | Reason | 
|---|---|---|
| 1 | sine of (m∠CAB) = (distance CB) / (distance CA) | if ∠ABC is a right angle, then sine of (m∠CAB) = (distance CB) / (distance CA) | 
| 2 | (distance CB) / (distance CA) = (distance BC) / (distance AC) | (distance CB) / (distance CA) = (distance BC) / (distance AC) | 
| 3 | sine of (m∠CAB) = (distance BC) / (distance AC) | if sine of (m∠CAB) = (distance CB) / (distance CA) and (distance CB) / (distance CA) = (distance BC) / (distance AC), then sine of (m∠CAB) = (distance BC) / (distance AC) | 
Comments
Please log in to add comments