Proof: Vertical Angles 3

Let's prove the following theorem:

if m∠WPY = 180 and m∠XPZ = 180, then m∠YPX = m∠WPZ

W X Z Y P

Proof:

View as a tree | View dependent proofs | Try proving it

Given
1 m∠WPY = 180
2 m∠XPZ = 180
Proof Table
# Claim Reason
1 m∠YPW = 180 if m∠WPY = 180, then m∠YPW = 180
2 (m∠YPX) + (m∠XPW) = 180 if m∠YPW = 180, then (m∠YPX) + (m∠XPW) = 180
3 m∠YPX = 180 + ((m∠XPW) ⋅ (-1)) if (m∠YPX) + (m∠XPW) = 180, then m∠YPX = 180 + ((m∠XPW) ⋅ (-1))
4 (m∠XPW) + (m∠WPZ) = 180 if m∠XPZ = 180, then (m∠XPW) + (m∠WPZ) = 180
5 m∠WPZ = 180 + ((m∠XPW) ⋅ (-1)) if (m∠XPW) + (m∠WPZ) = 180, then m∠WPZ = 180 + ((m∠XPW) ⋅ (-1))
6 m∠YPX = m∠WPZ if m∠YPX = 180 + ((m∠XPW) ⋅ (-1)) and m∠WPZ = 180 + ((m∠XPW) ⋅ (-1)), then m∠YPX = m∠WPZ

Comments

Please log in to add comments