Proof: Alternate Interior Angles Theorem 4
Let's prove the following theorem:
if m∠WSX = 180 and m∠YTZ = 180 and m∠STZ = m∠TSW, then WX || YZ
Proof:
Proof Table
| # | Claim | Reason |
|---|---|---|
| 1 | m∠TSW = m∠WST | m∠TSW = m∠WST |
| 2 | m∠STZ = m∠WST | if m∠STZ = m∠TSW and m∠TSW = m∠WST, then m∠STZ = m∠WST |
| 3 | m∠WST = m∠STZ | if m∠STZ = m∠WST, then m∠WST = m∠STZ |
| 4 | WX || YZ | if m∠WSX = 180 and m∠YTZ = 180 and m∠WST = m∠STZ, then WX || YZ |
Comments
Please log in to add comments