Certificate Programs
Courses
Building Blocks
Types
Functions
Properties
Conditional Properties
Proofs
Why Logicwalk?
Log In
Get Started
if
W
X
||
Y
Z
and
m∠
W
S
X
=
180
and
m∠
Y
T
Z
=
180
, then
m∠
X
S
T
=
m∠
S
T
Y
View as a table
|
Try proving it
Start from the conclusion and work back up the proof. Click the arrow to show the parents.
m∠
X
S
T
=
m∠
S
T
Y
,
if (
W
X
||
Y
Z
) and (
m∠
W
S
X
=
180
) and (
m∠
Y
T
Z
=
180
), then
m∠
W
S
T
=
m∠
S
T
Z
X
W
||
Z
Y
,
if
A
B
||
C
D
, then
B
A
||
D
C
W
X
||
Y
Z
m∠
X
S
W
=
180
,
if
m∠
A
B
C
=
x
, then
m∠
C
B
A
=
x
m∠
W
S
X
=
180
m∠
Z
T
Y
=
180
,
if
m∠
A
B
C
=
x
, then
m∠
C
B
A
=
x
m∠
Y
T
Z
=
180