Proof: Alternate Interior Angles Theorem (Converse) 7
Let's prove the following theorem:
if WS || TZ, then m∠TZW = m∠SWZ
Proof:
Given
| 1 | WS || TZ |
|---|
| # | Claim | Reason |
|---|---|---|
| 1 | m∠SWZ = m∠WZT | if WS || TZ, then m∠SWZ = m∠WZT |
| 2 | m∠WZT = m∠SWZ | if m∠SWZ = m∠WZT, then m∠WZT = m∠SWZ |
| 3 | m∠WZT = m∠TZW | m∠WZT = m∠TZW |
| 4 | m∠TZW = m∠SWZ | if m∠WZT = m∠TZW and m∠WZT = m∠SWZ, then m∠TZW = m∠SWZ |
Comments
Please log in to add comments