Proof: Quadrilateral Parallel

Let's prove the following theorem:

if distance XY = distance ZW and XY || WZ, then XW || YZ

W X Z Y

Proof:

View as a tree | View dependent proofs | Try proving it

Given
1 distance XY = distance ZW
2 XY || WZ
Proof Table
# Claim Reason
1 m∠XYW = m∠ZWY if XY || WZ, then m∠XYW = m∠ZWY
2 distance YW = distance WY distance YW = distance WY
3 XYW ≅ △ZWY if distance XY = distance ZW and m∠XYW = m∠ZWY and distance YW = distance WY, then △XYW ≅ △ZWY
4 m∠YWX = m∠WYZ if △XYW ≅ △ZWY, then m∠YWX = m∠WYZ
5 m∠XWY = m∠WYZ if m∠YWX = m∠WYZ, then m∠XWY = m∠WYZ
6 XW || YZ if m∠XWY = m∠WYZ, then XW || YZ

Comments

Please log in to add comments