Quiz (1 point)
Given that:
    
    
quadrilateral WXYZ is convex
    
    Prove that:
The following properties may be helpful:
    - ((m∠YWX) + (m∠WXY)) + (m∠XYW) = 180
- ((m∠YWX) + (m∠WXY)) + (m∠XYW) = 180
- 180 + 180 = 360
- ((a + b) + c) + ((d + e) + f) = ((((a + b) + c) + d) + e) + f
- if a = b, then a + c = b + c 
- if the following are true: - a = b
- b = c
 - then a = c 
- if the following are true: - a + b = c
- d = b
 - then a + d = c 
- if quadrilateral ABCD is convex, then point A lies in interior of ∠BCD
- if point X lies in interior of ∠ABC, then m∠ABC = (m∠ABX) + (m∠XBC)
- if quadrilateral ABCD is convex, then point C lies in interior of ∠DAB
- if point X lies in interior of ∠ABC, then m∠ABC = (m∠ABX) + (m∠XBC)
- if (((m∠ABC) + (m∠BCA)) + (m∠CAB)) + (((m∠ACD) + (m∠CDA)) + (m∠DAC)) = (((((m∠ABC) + (m∠BCA)) + (m∠CAB)) + (m∠ACD)) + (m∠CDA)) + (m∠DAC), then (((m∠ABC) + (m∠BCA)) + (m∠CAB)) + (((m∠ACD) + (m∠CDA)) + (m∠DAC)) = (((m∠ABC) + (m∠CDA)) + ((m∠BCA) + (m∠ACD))) + ((m∠DAC) + (m∠CAB))
- if the following are true: - x = c + d
- y = e + f
 - then ((a + b) + (c + d)) + (e + f) = ((a + b) + x) + y 
- if ((a + b) + c) + e = ((a + b) + g) + h, then ((a + b) + c) + e = ((a + g) + b) + h 
- if the following are true: - a = b
- b = c
 - then a = c 
- if the following are true: - a = b
- a = c
 - then b = c 
Please write your proof in the table below. Each row should contain one claim. The last claim is the statement that you are trying to prove.