Proof: Two Angles Equal Then Isosceles

Let's prove the following theorem:

if m∠YXZ = m∠XYZ, then distance ZX = distance ZY

X Z Y P

Proof:

View as a tree | View dependent proofs | Try proving it

Given
1 m∠YXZ = m∠XYZ
Assumptions
2 m∠XPY = 180
3 ray ZP bisects ∠XZY
Proof Table
# Claim Reason
1 m∠PXZ = m∠YXZ if m∠XPY = 180, then m∠PXZ = m∠YXZ
2 m∠PYZ = m∠XYZ if m∠XPY = 180, then m∠PYZ = m∠XYZ
3 m∠PXZ = m∠XYZ if m∠PXZ = m∠YXZ and m∠YXZ = m∠XYZ, then m∠PXZ = m∠XYZ
4 m∠PXZ = m∠PYZ if m∠PXZ = m∠XYZ and m∠PYZ = m∠XYZ, then m∠PXZ = m∠PYZ
5 m∠XZP = m∠PZY if ray ZP bisects ∠XZY, then m∠XZP = m∠PZY
6 m∠XZP = m∠YZP if m∠XZP = m∠PZY, then m∠XZP = m∠YZP
7 distance ZP = distance ZP distance ZP = distance ZP
8 XZP ≅ △YZP if m∠PXZ = m∠PYZ and m∠XZP = m∠YZP and distance ZP = distance ZP, then △XZP ≅ △YZP
9 distance ZX = distance ZY if △XZP ≅ △YZP, then distance ZX = distance ZY

Comments

Please log in to add comments