Proof: If Isosceles Trapezoid Angles Congruent
Let's prove the following theorem:
if quadrilateral WXYZ is an isosceles trapezoid, then m∠ZWX = m∠WXY
Proof:
Given
Assumptions
1 | quadrilateral WXYZ is an isosceles trapezoid |
---|
2 | WZ || PY |
---|---|
3 | m∠WPX = 180 |
# | Claim | Reason |
---|---|---|
1 | distance WZ = distance XY | if quadrilateral WXYZ is an isosceles trapezoid, then distance WZ = distance XY |
2 | WX || ZY | if quadrilateral WXYZ is an isosceles trapezoid, then WX || ZY |
3 | WP || ZY | if WX || ZY and m∠WPX = 180, then WP || ZY |
4 | WPYZ is a parallelogram | if WP || ZY and WZ || PY, then WPYZ is a parallelogram |
5 | distance WZ = distance PY | if WPYZ is a parallelogram, then distance WZ = distance PY |
6 | distance PY = distance XY | if distance WZ = distance PY and distance WZ = distance XY, then distance PY = distance XY |
7 | m∠YPX = m∠PXY | if distance PY = distance XY, then m∠YPX = m∠PXY |
8 | YP || ZW | if WZ || PY, then YP || ZW |
9 | m∠XPW = 180 | if m∠WPX = 180, then m∠XPW = 180 |
10 | m∠YPX = m∠ZWP | if YP || ZW and m∠XPW = 180, then m∠YPX = m∠ZWP |
11 | m∠ZWP = m∠PXY | if m∠YPX = m∠ZWP and m∠YPX = m∠PXY, then m∠ZWP = m∠PXY |
12 | m∠ZWX = m∠WXY | if m∠ZWP = m∠PXY and m∠WPX = 180, then m∠ZWX = m∠WXY |
Comments
Please log in to add comments