Proof: If Parallelogram Diagonal Then Congruent Triangles

Let's prove the following theorem:

if WXYZ is a parallelogram, then △ZWY ≅ △XYW

Z W X Y

Proof:

View as a tree | View dependent proofs | Try proving it

Given
1 WXYZ is a parallelogram
Proof Table
# Claim Reason
1 WX || ZY if WXYZ is a parallelogram, then WX || ZY
2 WZ || XY if WXYZ is a parallelogram, then WZ || XY
3 m∠XWY = m∠WYZ if WX || ZY, then m∠XWY = m∠WYZ
4 m∠WYZ = m∠YWX if m∠XWY = m∠WYZ, then m∠WYZ = m∠YWX
5 m∠ZWY = m∠WYX if WZ || XY, then m∠ZWY = m∠WYX
6 m∠ZWY = m∠XYW if m∠ZWY = m∠WYX, then m∠ZWY = m∠XYW
7 distance WY = distance YW distance WY = distance YW
8 ZWY ≅ △XYW if m∠ZWY = m∠XYW and distance WY = distance YW and m∠WYZ = m∠YWX, then △ZWY ≅ △XYW

Comments

Please log in to add comments