Quiz (1 point)
Prove that:
△PYZ ≅ △PWX
The following properties may be helpful:
- if ABCD is a parallelogram, then AB || DC
- if WS || TZ, then m∠WST = m∠STZ
- if m∠ABC = m∠XYZ, then m∠ABC = m∠ZYX
- if m∠CBA = 180, then m∠XAC = m∠XAB
- if m∠ABC = 180, then m∠XAC = m∠XAB
if the following are true:
- a = b
- b = d
- a = c
then d = c
- if WX || YZ, then m∠YZW = m∠ZWX
- if m∠CBA = 180, then m∠XAC = m∠XAB
- if m∠ABC = 180, then m∠CAX = m∠BAX
if the following are true:
- a = b
- a = c
- b = d
then c = d
- if m∠ABC = m∠XYZ, then m∠CBA = m∠XYZ
- if WXYZ is a parallelogram, then distance WX = distance ZY
- if distance AB = distance CD, then distance DC = distance AB
- if (m∠ABC = m∠DEF) and (distance BC = distance EF) and (m∠BCA = m∠EFD), then △ABC ≅ △DEF
Please write your proof in the table below. Each row should contain one claim. The last claim is the statement that you are trying to prove.