Proof: Rectangle Right Angles
Let's prove the following theorem:
if WXYZ is a rectangle, then ∠ZWX is a right angle
Proof:
Given
1 | WXYZ is a rectangle |
---|
# | Claim | Reason |
---|---|---|
1 | ∠WXY is a right angle | if WXYZ is a rectangle, then ∠WXY is a right angle |
2 | WXYZ is a parallelogram | if WXYZ is a rectangle, then WXYZ is a parallelogram |
3 | WZ || XY | if WXYZ is a parallelogram, then WZ || XY |
4 | (m∠ZWX) + (m∠WXY) = 180 | if WZ || XY, then (m∠ZWX) + (m∠WXY) = 180 |
5 | m∠WXY = 90 | if ∠WXY is a right angle, then m∠WXY = 90 |
6 | (m∠ZWX) + 90 = 180 | if (m∠ZWX) + (m∠WXY) = 180 and m∠WXY = 90, then (m∠ZWX) + 90 = 180 |
7 | m∠ZWX = 90 | if (m∠ZWX) + 90 = 180, then m∠ZWX = 90 |
8 | ∠ZWX is a right angle | if m∠ZWX = 90, then ∠ZWX is a right angle |
Comments
Please log in to add comments