Proof: Rectangle Right Angles
Let's prove the following theorem:
if WXYZ is a rectangle, then ∠ZWX is a right angle
    
    
Proof:
  
      
      Given
      
    
    
      
  
  
| 1 | WXYZ is a rectangle | 
|---|
| # | Claim | Reason | 
|---|---|---|
| 1 | ∠WXY is a right angle | if WXYZ is a rectangle, then ∠WXY is a right angle | 
| 2 | WXYZ is a parallelogram | if WXYZ is a rectangle, then WXYZ is a parallelogram | 
| 3 | WZ || XY | if WXYZ is a parallelogram, then WZ || XY | 
| 4 | (m∠ZWX) + (m∠WXY) = 180 | if WZ || XY, then (m∠ZWX) + (m∠WXY) = 180 | 
| 5 | m∠WXY = 90 | if ∠WXY is a right angle, then m∠WXY = 90 | 
| 6 | (m∠ZWX) + 90 = 180 | if (m∠ZWX) + (m∠WXY) = 180 and m∠WXY = 90, then (m∠ZWX) + 90 = 180 | 
| 7 | m∠ZWX = 90 | if (m∠ZWX) + 90 = 180, then m∠ZWX = 90 | 
| 8 | ∠ZWX is a right angle | if m∠ZWX = 90, then ∠ZWX is a right angle | 
Comments
Please log in to add comments