Quiz (1 point)
Prove that:
△PWX ≅ △PYZ
The following properties may be helpful:
- if ABCD is a rhombus, then ABCD is a parallelogram
- if ABCD is a parallelogram, then AB || DC
- if WX || YZ, then m∠YZW = m∠ZWX
- if (m∠AXC = 180) and (m∠DCA = m∠CAB), then m∠DCX = m∠XAB
- if m∠ABC = m∠XYZ, then m∠XYZ = m∠CBA
- if WX || YZ, then m∠ZYX = m∠YXW
- if (m∠AXC = 180) and (m∠DCA = m∠CAB), then m∠DCX = m∠XAB
- if m∠ABC = m∠XYZ, then m∠ZYX = m∠ABC
- if WXYZ is a parallelogram, then distance WX = distance ZY
- if distance AB = distance CD, then distance AB = distance DC
- if (m∠ABC = m∠DEF) and (distance BC = distance EF) and (m∠BCA = m∠EFD), then △ABC ≅ △DEF
Please write your proof in the table below. Each row should contain one claim. The last claim is the statement that you are trying to prove.