Quiz (1 point)
Prove that:
△ABC ∼ △XYZ
The following properties may be helpful:
- if (WX || YZ) and (m∠ZXR = 180), then m∠YZR = m∠WXR
- if (WX || YZ) and (m∠YWR = 180), then m∠ZYR = m∠XWR
- if m∠ABC = m∠XYZ, then m∠CBA = m∠ZYX
- if (m∠CAB = m∠ZXY) and (m∠ABC = m∠XYZ), then △ABC ∼ △XYZ
- if △ABC ∼ △DEF, then △BCA ∼ △EFD
- if △ABC ∼ △DEF, then △DEF ∼ △ABC
- if △ABC ∼ △DEF, then (distance FD) / (distance CA) = (distance EF) / (distance BC)
if the following are true:
- a = b / c
- b = d
then a = d / c
if the following are true:
- a = b
- b = c
then a = c
if a / c = b / c, then b = a
if a = b, then b = a
- if △ABC ∼ △DEF, then m∠ABC = m∠DEF
if the following are true:
- a = b
- b = c
then a = c
- if (distance AB = distance DE) and (m∠ABC = m∠DEF) and (distance BC = distance EF), then △ABC ≅ △DEF
- if △ABC ≅ △DEF, then △ABC ∼ △DEF
- if (△ABC ∼ △DEF) and (△DEF ∼ △XYZ), then △ABC ∼ △XYZ
Please write your proof in the table below. Each row should contain one claim. The last claim is the statement that you are trying to prove.