Certificate Programs
Courses
Building Blocks
Types
Functions
Properties
Conditional Properties
Proofs
Why Logicwalk?
Log In
Get Started
if
m∠
X
Y
Z
=
m∠
X
P
Y
and
m∠
Y
X
Z
=
m∠
P
X
Y
, then △
X
Y
Z
∼ △
X
P
Y
View as a table
|
Try proving it
Start from the conclusion and work back up the proof. Click the arrow to show the parents.
△
X
Y
Z
∼ △
X
P
Y
,
if (
m∠
C
A
B
=
m∠
Z
X
Y
) and (
m∠
A
B
C
=
m∠
X
Y
Z
), then △
A
B
C
∼ △
X
Y
Z
m∠
Z
X
Y
=
m∠
Y
X
P
,
if
m∠
A
B
C
=
m∠
X
Y
Z
, then
m∠
C
B
A
=
m∠
Z
Y
X
m∠
Y
X
Z
=
m∠
P
X
Y
m∠
X
Y
Z
=
m∠
X
P
Y