Proof: Algebra Square Sum

Let's prove the following theorem:

if the following are true:
  • x = (aa) + (bb)
  • m = a
  • n = b

then x = (nn) + (mm)

Proof:

View as a tree | View dependent proofs | Try proving it

Given
1 x = (aa) + (bb)
2 m = a
3 n = b
Proof Table
# Claim Reason
1 mm = aa if m = a and m = a, then mm = aa
2 x = (mm) + (bb) if x = (aa) + (bb) and mm = aa, then x = (mm) + (bb)
3 nn = bb if n = b and n = b, then nn = bb
4 x = (mm) + (nn) if x = (mm) + (bb) and nn = bb, then x = (mm) + (nn)
5 (mm) + (nn) = (nn) + (mm) (mm) + (nn) = (nn) + (mm)
6 x = (nn) + (mm) if x = (mm) + (nn) and (mm) + (nn) = (nn) + (mm), then x = (nn) + (mm)

Comments

Please log in to add comments