Proof: Reorder Terms 3

Let's prove the following theorem:

if ((a + b) + c) + e = ((a + b) + g) + h, then ((a + b) + c) + e = ((a + g) + b) + h

Proof:

View as a tree | View dependent proofs | Try proving it

Given
1 ((a + b) + c) + e = ((a + b) + g) + h
Proof Table
# Claim Reason
1 ((a + b) + g) + h = ((a + g) + b) + h ((a + b) + g) + h = ((a + g) + b) + h
2 ((a + b) + c) + e = ((a + g) + b) + h if ((a + b) + c) + e = ((a + b) + g) + h and ((a + b) + g) + h = ((a + g) + b) + h, then ((a + b) + c) + e = ((a + g) + b) + h

Comments

Please log in to add comments