Proof: Equation a
Let's prove the following theorem:
((a + c) + d) + b = ((b + c) + a) + d
Proof:
# | Claim | Reason |
---|---|---|
1 | (a + c) + d = (c + a) + d | (a + c) + d = (c + a) + d |
2 | ((a + c) + d) + b = ((c + a) + d) + b | if (a + c) + d = (c + a) + d, then ((a + c) + d) + b = ((c + a) + d) + b |
3 | ((c + a) + d) + b = (c + a) + (d + b) | ((c + a) + d) + b = (c + a) + (d + b) |
4 | d + b = b + d | d + b = b + d |
5 | (c + a) + (d + b) = (c + a) + (b + d) | if d + b = b + d, then (c + a) + (d + b) = (c + a) + (b + d) |
6 | (c + a) + (b + d) = ((c + a) + b) + d | (c + a) + (b + d) = ((c + a) + b) + d |
7 | (c + a) + b = (b + c) + a | (c + a) + b = (b + c) + a |
8 | ((c + a) + b) + d = ((b + c) + a) + d | if (c + a) + b = (b + c) + a, then ((c + a) + b) + d = ((b + c) + a) + d |
9 | ((a + c) + d) + b = ((b + c) + a) + d | if ((a + c) + d) + b = ((c + a) + d) + b and ((c + a) + d) + b = (c + a) + (d + b) and (c + a) + (d + b) = (c + a) + (b + d) and (c + a) + (b + d) = ((c + a) + b) + d and ((c + a) + b) + d = ((b + c) + a) + d, then ((a + c) + d) + b = ((b + c) + a) + d |
Comments
Please log in to add comments