Proof: Rearrange Sum 6 2

Let's prove the following theorem:

((((a + b) + c) + d) + e) + f = ((a + b) + (c + d)) + (e + f)

Proof:

View as a tree | View dependent proofs | Try proving it

Proof Table
# Claim Reason
1 ((((a + b) + c) + d) + e) + f = (((a + b) + c) + d) + (e + f) ((((a + b) + c) + d) + e) + f = (((a + b) + c) + d) + (e + f)
2 ((a + b) + c) + d = (a + b) + (c + d) ((a + b) + c) + d = (a + b) + (c + d)
3 (((a + b) + c) + d) + (e + f) = ((a + b) + (c + d)) + (e + f) if ((a + b) + c) + d = (a + b) + (c + d), then (((a + b) + c) + d) + (e + f) = ((a + b) + (c + d)) + (e + f)
4 ((((a + b) + c) + d) + e) + f = ((a + b) + (c + d)) + (e + f) if ((((a + b) + c) + d) + e) + f = (((a + b) + c) + d) + (e + f) and (((a + b) + c) + d) + (e + f) = ((a + b) + (c + d)) + (e + f), then ((((a + b) + c) + d) + e) + f = ((a + b) + (c + d)) + (e + f)

Comments

Please log in to add comments