Proof: Substitute First Term
Let's prove the following theorem:
if the following are true:
- (a + b) + c = d
- a = e
then (e + b) + c = d
Proof:
Given
1 | (a + b) + c = d |
---|---|
2 | a = e |
# | Claim | Reason |
---|---|---|
1 | (a + b) + c = (e + b) + c | if a = e, then (a + b) + c = (e + b) + c |
2 | (e + b) + c = d | if (a + b) + c = (e + b) + c and (a + b) + c = d, then (e + b) + c = d |
Comments
Please log in to add comments