Proof: Rearrange Sum 6
Let's prove the following theorem:
((((a + b) + c) + d) + e) + f = ((((a + e) + b) + d) + f) + c
Proof:
# | Claim | Reason |
---|---|---|
1 | (((a + b) + c) + d) + e = (((a + b) + c) + e) + d | (((a + b) + c) + d) + e = (((a + b) + c) + e) + d |
2 | ((a + b) + c) + e = ((a + b) + e) + c | ((a + b) + c) + e = ((a + b) + e) + c |
3 | (a + b) + e = (a + e) + b | (a + b) + e = (a + e) + b |
4 | ((a + b) + e) + c = ((a + e) + b) + c | if (a + b) + e = (a + e) + b, then ((a + b) + e) + c = ((a + e) + b) + c |
5 | ((a + b) + c) + e = ((a + e) + b) + c | if ((a + b) + c) + e = ((a + b) + e) + c and ((a + b) + e) + c = ((a + e) + b) + c, then ((a + b) + c) + e = ((a + e) + b) + c |
6 | (((a + b) + c) + e) + d = (((a + e) + b) + c) + d | if ((a + b) + c) + e = ((a + e) + b) + c, then (((a + b) + c) + e) + d = (((a + e) + b) + c) + d |
7 | (((a + b) + c) + d) + e = (((a + e) + b) + c) + d | if (((a + b) + c) + d) + e = (((a + b) + c) + e) + d and (((a + b) + c) + e) + d = (((a + e) + b) + c) + d, then (((a + b) + c) + d) + e = (((a + e) + b) + c) + d |
8 | (((a + e) + b) + c) + d = (((a + e) + b) + d) + c | (((a + e) + b) + c) + d = (((a + e) + b) + d) + c |
9 | (((a + b) + c) + d) + e = (((a + e) + b) + d) + c | if (((a + b) + c) + d) + e = (((a + e) + b) + c) + d and (((a + e) + b) + c) + d = (((a + e) + b) + d) + c, then (((a + b) + c) + d) + e = (((a + e) + b) + d) + c |
10 | ((((a + b) + c) + d) + e) + f = ((((a + e) + b) + d) + c) + f | if (((a + b) + c) + d) + e = (((a + e) + b) + d) + c, then ((((a + b) + c) + d) + e) + f = ((((a + e) + b) + d) + c) + f |
11 | ((((a + e) + b) + d) + c) + f = ((((a + e) + b) + d) + f) + c | ((((a + e) + b) + d) + c) + f = ((((a + e) + b) + d) + f) + c |
12 | ((((a + b) + c) + d) + e) + f = ((((a + e) + b) + d) + f) + c | if ((((a + b) + c) + d) + e) + f = ((((a + e) + b) + d) + c) + f and ((((a + e) + b) + d) + c) + f = ((((a + e) + b) + d) + f) + c, then ((((a + b) + c) + d) + e) + f = ((((a + e) + b) + d) + f) + c |
Comments
Please log in to add comments