Quiz (1 point)
Prove that:
index of value [ 0, [ ] ] in [ [ 1, [ ] ], [ [ 0, [ ] ], [ ] ] ] = [ 1, [ ] ]
The following properties may be helpful:
- index of value value in numbers = index of value value in numbers with current index [ 0, [ ] ]
- not (1 = 0)
- sum of unsigned integers [ 0, [ ] ] and [ 1, [ ] ] = [ 1, [ ] ]
- [0,[]] = [0,[]]
- if not(x = y), then [x,xs] ≠ [y,ys]
- if are_not_equal_list(number, value): find_number_index([number, remain], value, index) == find_number_index(remain, value, add_uint(index, [1, []]))
if sum of unsigned integers [ 0, [ ] ] and [ 1, [ ] ] = [ 1, [ ] ], then index of value [ 0, [ ] ] in [ [ 0, [ ] ], [ ] ] with current index (sum of unsigned integers [ 0, [ ] ] and [ 1, [ ] ]) = index of value [ 0, [ ] ] in [ [ 0, [ ] ], [ ] ] with current index [ 1, [ ] ]
if the following are true:
- a = b
- b = c
then a = c
- if are_equal_list(number, value): find_number_index([number, remain], value, index) == index
if the following are true:
- a = b
- b = c
then a = c
if the following are true:
- a = b
- b = c
then a = c
Please write your proof in the table below. Each row should contain one claim. The last claim is the statement that you are trying to prove.