Proof: Minimum Example 2

Let's prove the following theorem:

minimum value of stack [ [ 1, [ ] ], [ [ 0, [ ] ], [ ] ] ] = [ 0, [ ] ]

Proof:

View as a tree | View dependent proofs | Try proving it

Proof Table
# Claim Reason
1 [ 1, [ ] ] is greater than [ 0, [ ] ] [ 1, [ ] ] is greater than [ 0, [ ] ]
2 minimum value of stack [ [ 0, [ ] ], [ ] ] = [ 0, [ ] ] minimum value of stack [ [ 0, [ ] ], [ ] ] = [ 0, [ ] ]
3 [ 1, [ ] ] is greater than (minimum value of stack [ [ 0, [ ] ], [ ] ]) if [ 1, [ ] ] is greater than [ 0, [ ] ] and minimum value of stack [ [ 0, [ ] ], [ ] ] = [ 0, [ ] ], then [ 1, [ ] ] is greater than (minimum value of stack [ [ 0, [ ] ], [ ] ])
4 minimum value of stack [ [ 1, [ ] ], [ [ 0, [ ] ], [ ] ] ] = minimum value of stack [ [ 0, [ ] ], [ ] ] if [ 1, [ ] ] is greater than (minimum value of stack [ [ 0, [ ] ], [ ] ]), then minimum value of stack [ [ 1, [ ] ], [ [ 0, [ ] ], [ ] ] ] = minimum value of stack [ [ 0, [ ] ], [ ] ]
5 minimum value of stack [ [ 1, [ ] ], [ [ 0, [ ] ], [ ] ] ] = [ 0, [ ] ] if minimum value of stack [ [ 1, [ ] ], [ [ 0, [ ] ], [ ] ] ] = minimum value of stack [ [ 0, [ ] ], [ ] ] and minimum value of stack [ [ 0, [ ] ], [ ] ] = [ 0, [ ] ], then minimum value of stack [ [ 1, [ ] ], [ [ 0, [ ] ], [ ] ] ] = [ 0, [ ] ]

Comments

Please log in to add comments