Quiz (1 point)
Prove that:
index of the mininum value in stack [ [ 1, [ ] ], [ [ 0, [ ] ], [ ] ] ] = [ 1, [ ] ]
The following properties may be helpful:
- index of the mininum value in stack numbers = index of value (minimum value of stack numbers) in numbers
- minimum value of stack [ [ 1, [ ] ], [ [ 0, [ ] ], [ ] ] ] = [ 0, [ ] ]
- index of value [ 0, [ ] ] in [ [ 1, [ ] ], [ [ 0, [ ] ], [ ] ] ] = [ 1, [ ] ]
if minimum value of stack [ [ 1, [ ] ], [ [ 0, [ ] ], [ ] ] ] = [ 0, [ ] ], then index of value (minimum value of stack [ [ 1, [ ] ], [ [ 0, [ ] ], [ ] ] ]) in [ [ 1, [ ] ], [ [ 0, [ ] ], [ ] ] ] = index of value [ 0, [ ] ] in [ [ 1, [ ] ], [ [ 0, [ ] ], [ ] ] ]
if the following are true:
- a = b
- b = c
then a = c
if the following are true:
- a = b
- b = c
then a = c
Please write your proof in the table below. Each row should contain one claim. The last claim is the statement that you are trying to prove.