Proof: Reverse Example
Let's prove the following theorem:
reverse of remaining stack [ [ 0, [ ] ], [ [ 1, [ ] ], [ ] ] ] and already reversed stack [ ] = [ [ 1, [ ] ], [ [ 0, [ ] ], [ ] ] ]
Proof:
# | Claim | Reason |
---|---|---|
1 | reverse of remaining stack [ [ 0, [ ] ], [ [ 1, [ ] ], [ ] ] ] and already reversed stack [ ] = reverse of remaining stack [ [ 1, [ ] ], [ ] ] and already reversed stack [ [ 0, [ ] ], [ ] ] | reverse of remaining stack [ [ 0, [ ] ], [ [ 1, [ ] ], [ ] ] ] and already reversed stack [ ] = reverse of remaining stack [ [ 1, [ ] ], [ ] ] and already reversed stack [ [ 0, [ ] ], [ ] ] |
2 | reverse of remaining stack [ [ 1, [ ] ], [ ] ] and already reversed stack [ [ 0, [ ] ], [ ] ] = [ [ 1, [ ] ], [ [ 0, [ ] ], [ ] ] ] | reverse of remaining stack [ [ 1, [ ] ], [ ] ] and already reversed stack [ [ 0, [ ] ], [ ] ] = [ [ 1, [ ] ], [ [ 0, [ ] ], [ ] ] ] |
3 | reverse of remaining stack [ [ 0, [ ] ], [ [ 1, [ ] ], [ ] ] ] and already reversed stack [ ] = [ [ 1, [ ] ], [ [ 0, [ ] ], [ ] ] ] | if reverse of remaining stack [ [ 0, [ ] ], [ [ 1, [ ] ], [ ] ] ] and already reversed stack [ ] = reverse of remaining stack [ [ 1, [ ] ], [ ] ] and already reversed stack [ [ 0, [ ] ], [ ] ] and reverse of remaining stack [ [ 1, [ ] ], [ ] ] and already reversed stack [ [ 0, [ ] ], [ ] ] = [ [ 1, [ ] ], [ [ 0, [ ] ], [ ] ] ], then reverse of remaining stack [ [ 0, [ ] ], [ [ 1, [ ] ], [ ] ] ] and already reversed stack [ ] = [ [ 1, [ ] ], [ [ 0, [ ] ], [ ] ] ] |
Comments
Please log in to add comments