Function A Key-Value Pair
a key,value entry
Format:
pair (key, value)
Input:
Output:
Properties that reference this function:
Conditional properties that reference this function:
if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j = a class named name with bases: bases
then Control Map at time (t + 1) = result of storing (pair ("class", name)) at key: j in map: (Control Map at time t)
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("class", class_name)
then the line at time (t + 1) = the line at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("class", class_name)
then the tab at time (t + 1) = j - 1
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("class", class_name)
then Expression Stack at time t = [ ]
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("class", class_name)
then Control Map at time (t + 1) = Control Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("class", class_name)
then Variables Map at time (t + 1) = Variables Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("class", class_name)
then Context Stack at time (t + 1) = Context Stack at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("class", class_name)
then "if" map at time (t + 1) = "if" map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("class", class_name)
then Expression Stack at time (t + 1) = Expression Stack at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("class", class_name)
then Python Object Store at time (t + 1) = Python Object Store at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("class", class_name)
then 'while stack' at time (t + 1) = 'while stack' at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("class", class_name)
then Class Map at time (t + 1) = Class Map at time t
(link)if the following are true:
- Parameters List at time t = [ ]
- Expression Stack at time t = [ [ ], [ [ obj_name.method_name(args), ys ], rest ] ]
- value at obj_name in map (Variables Map at time t) = Python reference index
- the element at index index of stack (Python Object Store at time t) = Python object: [ entry "__class_name__": class_name, e_rest ]
- line number of method method_name of class class_name in (Class Map at time t) = line
then Control Map at time (t + 1) = [ entry 0: (pair ("class", class_name)), [ entry 1: (pair ("method", method_name)), [ ] ] ]
(link)if the following are true:
- Parameters List at time t = [ ]
- Expression Stack at time t = [ [ ], [ [ Python constructor with name: class_name and arguments: args, ys ], rest ] ]
- line number of method "__init__" of class class_name in (Class Map at time t) = line
then Control Map at time (t + 1) = [ entry 0: (pair ("class", class_name)), [ entry 1: (pair ("method", "__init__")), [ ] ] ]
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("method", method_name)
then Python Object Store at time (t + 1) = Python Object Store at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("method", method_name)
then Class Map at time (t + 1) = Class Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("method", mname)
- Context Stack at time t = [ program context with variables: varis and expression state: (expression state with expression stack: expr_stack values: value_stack line: line tab: tab) and control map: control_map, rest ]
then Variables Map at time (t + 1) = varis
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("method", mname)
- Context Stack at time t = [ program context with variables: varis and expression state: (expression state with expression stack: expr_stack values: value_stack line: line tab: tab) and control map: control_map, rest ]
then the line at time (t + 1) = line
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("method", mname)
- Context Stack at time t = [ program context with variables: varis and expression state: (expression state with expression stack: expr_stack values: value_stack line: line tab: tab) and control map: control_map, rest ]
then the tab at time (t + 1) = tab
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("method", mname)
- Context Stack at time t = [ program context with variables: varis and expression state: (expression state with expression stack: expr_stack values: value_stack line: line tab: tab) and control map: control_map, rest ]
then Expression Stack at time (t + 1) = expr_stack
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("method", mname)
- Context Stack at time t = [ program context with variables: varis and expression state: (expression state with expression stack: expr_stack values: value_stack line: line tab: tab) and control map: control_map, rest ]
then Context Stack at time (t + 1) = rest
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("method", mname)
- Context Stack at time t = [ program context with variables: varis and expression state: (expression state with expression stack: expr_stack values: value_stack line: line tab: tab) and control map: control_map, rest ]
then Value Stack at time (t + 1) = value_stack
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("method", mname)
- Context Stack at time t = [ program context with variables: varis and expression state: (expression state with expression stack: expr_stack values: value_stack line: line tab: tab) and control map: control_map, rest ]
then Control Map at time (t + 1) = control_map
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("method", "__init__")
then Return Value at time (t + 1) = [ value at self in map (Variables Map at time t), [ ] ]
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("method", method_name)
- not (method_name = "__init__")
then Return Value at time (t + 1) = [ None, [ ] ]
(link)if the following are true:
- Expression Stack at time t = [ [ ], [ [
super()
, ys ], rest ] ] - Value Stack at time t = [ [ ], [ next_level, other_levels ] ]
- Control Map at time t = [ entry 0: (pair ("class", class_name)), [ entry 1: (pair ("method", method_name)), [ ] ] ]
- definition of method method_name of class class_name in (Class Map at time t) = method_map
- value at "params" in map method_map = [ param_name, other_params ]
- value at param_name in map (Variables Map at time t) = Python reference pi
then Expression Stack at time (t + 1) = [ ys, rest ]
(link)- Expression Stack at time t = [ [ ], [ [
if the following are true:
- Expression Stack at time t = [ [ ], [ [
super()
, ys ], rest ] ] - Value Stack at time t = [ [ ], [ next_level, other_levels ] ]
- Control Map at time t = [ entry 0: (pair ("class", class_name)), [ entry 1: (pair ("method", method_name)), [ ] ] ]
- definition of method method_name of class class_name in (Class Map at time t) = method_map
- value at "params" in map method_map = [ param_name, other_params ]
- value at param_name in map (Variables Map at time t) = Python reference pi
then Value Stack at time (t + 1) = [ [ Python super reference pi class_name, next_level ], other_levels ]
(link)- Expression Stack at time t = [ [ ], [ [
if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then the line at time (t + 1) = while_line
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then the tab at time (t + 1) = j - 1
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then Variables Map at time (t + 1) = Variables Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then stack at time (t + 1) = stack at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then "if" map at time (t + 1) = "if" map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then expression state at time (t + 1) = expression state at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then Python Object Store at time (t + 1) = Python Object Store at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then Class Map at time (t + 1) = Class Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then Control Map at time (t + 1) = Control Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then the line at time (t + 1) = while_line
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then the tab at time (t + 1) = j - 1
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then Variables Map at time (t + 1) = Variables Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then stack at time (t + 1) = stack at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then expression state at time (t + 1) = expression state at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then Python Object Store at time (t + 1) = Python Object Store at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then Class Map at time (t + 1) = Class Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then Control Map at time (t + 1) = Control Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = pair ("if", if_value)
then the line at time (t + 1) = i
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = pair ("if", if_value)
then the tab at time (t + 1) = j - 1
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = pair ("if", if_value)
then expression state at time (t + 1) = "not_expr"
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = pair ("if", if_value)
then Variables Map at time (t + 1) = Variables Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = pair ("if", if_value)
then stack at time (t + 1) = stack at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = pair ("if", if_value)
then Class Map at time (t + 1) = Class Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = pair ("if", if_value)
then Control Map at time (t + 1) = Control Map at time t
(link)if the following are true:
- expression state at time t = "call_build_args"
- Parameters List at time t = [ ]
- the expression at time t = function call with name: name and arguments: args
- there is a function named name with parameters params at line line
then Control Map at time (t + 1) = [ entry 0: (pair ("function", name)), [ ] ]
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
if test:
- expression state at time t = "end_expr"
- Return Value at time t = True
then Control Map at time (t + 1) = result of storing (pair ("if", True)) at key: j in map: (Control Map at time t)
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
if test:
- expression state at time t = "end_expr"
- Return Value at time t = False
then Control Map at time (t + 1) = result of storing (pair ("if", False)) at key: j in map: (Control Map at time t)
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
elif test:
- value at j in map (Control Map at time t) = pair ("if", False)
- expression state at time t = "not_expr"
then the expression at time (t + 1) = test
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
elif test:
- value at j in map (Control Map at time t) = pair ("if", False)
- expression state at time t = "not_expr"
then expression state at time (t + 1) = "begin_expr"
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
elif test:
- value at j in map (Control Map at time t) = pair ("if", False)
- expression state at time t = "not_expr"
then the line at time (t + 1) = i
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
elif test:
- value at j in map (Control Map at time t) = pair ("if", False)
- expression state at time t = "not_expr"
then the tab at time (t + 1) = j
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
elif test:
- value at j in map (Control Map at time t) = pair ("if", False)
- expression state at time t = "not_expr"
then Value Stack at time (t + 1) = [ ]
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
elif test:
- value at j in map (Control Map at time t) = pair ("if", False)
- expression state at time t = "not_expr"
then parent stack at time (t + 1) = [ ]
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
elif test:
- value at j in map (Control Map at time t) = pair ("if", False)
- expression state at time t = "not_expr"
then arguments stack at time (t + 1) = [ ]
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
elif test:
- value at j in map (Control Map at time t) = pair ("if", True)
- expression state at time t = "not_expr"
then the line at time (t + 1) = i + 1
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
elif test:
- value at j in map (Control Map at time t) = pair ("if", True)
- expression state at time t = "not_expr"
then the tab at time (t + 1) = j
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
elif test:
- expression state at time t = "end_expr"
- Return Value at time t = True
then Control Map at time (t + 1) = result of storing (pair ("if", True)) at key: j in map: (Control Map at time t)
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
else:
- value at j in map (Control Map at time t) = pair ("if", False)
then the line at time (t + 1) = i + 1
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
else:
- value at j in map (Control Map at time t) = pair ("if", False)
then the tab at time (t + 1) = j + 1
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
else:
- value at j in map (Control Map at time t) = pair ("if", True)
then the line at time (t + 1) = i + 1
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
else:
- value at j in map (Control Map at time t) = pair ("if", True)
then the tab at time (t + 1) = j
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("if", if_value)
then the line at time (t + 1) = i
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("if", if_value)
then the tab at time (t + 1) = j - 1
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("if", if_value)
then Variables Map at time (t + 1) = Variables Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("if", if_value)
then stack at time (t + 1) = stack at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("if", if_value)
then Python Object Store at time (t + 1) = Python Object Store at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("if", if_value)
then Class Map at time (t + 1) = Class Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("if", if_value)
then Control Map at time (t + 1) = Control Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j = "while" statement with condition (function call with name: name and arguments: args)
- expression state at time t = "end_expr"
- Return Value at time t = True
then Control Map at time (t + 1) = result of storing (pair ("while", i)) at key: j in map: (Control Map at time t)
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j = a class named name with bases: bases
then Control Map at time (t + 1) = result of storing (pair ("class", name)) at key: j in map: (Control Map at time t)
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("class", class_name)
then the line at time (t + 1) = the line at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("class", class_name)
then the tab at time (t + 1) = j - 1
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("class", class_name)
then expression state at time t = "not_expr"
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("class", class_name)
then Control Map at time (t + 1) = Control Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("class", class_name)
then Variables Map at time (t + 1) = Variables Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("class", class_name)
then stack at time (t + 1) = stack at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("class", class_name)
then "if" map at time (t + 1) = "if" map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("class", class_name)
then expression state at time (t + 1) = expression state at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("class", class_name)
then Python Object Store at time (t + 1) = Python Object Store at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("class", class_name)
then 'while stack' at time (t + 1) = 'while stack' at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("class", class_name)
then Class Map at time (t + 1) = Class Map at time t
(link)if the following are true:
- expression state at time t = "call_build_args"
- Parameters List at time t = [ ]
- the expression at time t = obj_name.method_name(args)
- value at obj_name in map (Variables Map at time t) = Python reference index
- the element at index index of stack (Python Object Store at time t) = Python object: [ entry "__class_name__": class_name, e_rest ]
- line number of method method_name of class class_name in (Class Map at time t) = line
then Control Map at time (t + 1) = [ entry 0: (pair ("class", class_name)), [ entry 1: (pair ("method", method_name)), [ ] ] ]
(link)if the following are true:
- expression state at time t = "call_build_args"
- Parameters List at time t = [ ]
- the expression at time t = Python constructor with name: class_name and arguments: args
- line number of method "__init__" of class class_name in (Class Map at time t) = line
then Control Map at time (t + 1) = [ entry 0: (pair ("class", class_name)), [ entry 1: (pair ("method", "__init__")), [ ] ] ]
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("method", method_name)
then "if" map at time (t + 1) = "if" map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("method", method_name)
then 'while stack' at time (t + 1) = 'while stack' at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("method", method_name)
then Python Object Store at time (t + 1) = Python Object Store at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("method", method_name)
then Class Map at time (t + 1) = Class Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("method", mname)
- stack at time t = [ program context with variables: varis and expression state: (expression state with parent stack: parent_stack arguments: arg_stack values: value_stack line: line tab: tab) and control map: control_map, rest ]
then Variables Map at time (t + 1) = varis
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("method", mname)
- stack at time t = [ program context with variables: varis and expression state: (expression state with parent stack: parent_stack arguments: arg_stack values: value_stack line: line tab: tab) and control map: control_map, rest ]
then the line at time (t + 1) = line
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("method", mname)
- stack at time t = [ program context with variables: varis and expression state: (expression state with parent stack: parent_stack arguments: arg_stack values: value_stack line: line tab: tab) and control map: control_map, rest ]
then the tab at time (t + 1) = tab
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("method", mname)
- stack at time t = [ program context with variables: varis and expression state: (expression state with parent stack: parent_stack arguments: arg_stack values: value_stack line: line tab: tab) and control map: control_map, rest ]
then expression state at time (t + 1) = "call_returned"
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("method", mname)
- stack at time t = [ program context with variables: varis and expression state: (expression state with parent stack: parent_stack arguments: arg_stack values: value_stack line: line tab: tab) and control map: control_map, rest ]
then parent stack at time (t + 1) = parent_stack
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("method", mname)
- stack at time t = [ program context with variables: varis and expression state: (expression state with parent stack: parent_stack arguments: arg_stack values: value_stack line: line tab: tab) and control map: control_map, rest ]
then stack at time (t + 1) = rest
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("method", mname)
- stack at time t = [ program context with variables: varis and expression state: (expression state with parent stack: parent_stack arguments: arg_stack values: value_stack line: line tab: tab) and control map: control_map, rest ]
then Value Stack at time (t + 1) = value_stack
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("method", mname)
- stack at time t = [ program context with variables: varis and expression state: (expression state with parent stack: parent_stack arguments: arg_stack values: value_stack line: line tab: tab) and control map: control_map, rest ]
then arguments stack at time (t + 1) = arg_stack
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("method", mname)
- stack at time t = [ program context with variables: varis and expression state: (expression state with parent stack: parent_stack arguments: arg_stack values: value_stack line: line tab: tab) and control map: control_map, rest ]
then Control Map at time (t + 1) = control_map
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("method", "__init__")
then Return Value at time (t + 1) = value at self in map (Variables Map at time t)
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("method", method_name)
- not (method_name = "__init__")
then Return Value at time (t + 1) = None
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then the line at time (t + 1) = while_line
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then the tab at time (t + 1) = j - 1
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then Variables Map at time (t + 1) = Variables Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then Context Stack at time (t + 1) = Context Stack at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then Expression Stack at time (t + 1) = [ ]
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then Python Object Store at time (t + 1) = Python Object Store at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then Class Map at time (t + 1) = Class Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then Control Map at time (t + 1) = Control Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then the line at time (t + 1) = while_line
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then the tab at time (t + 1) = j - 1
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then Variables Map at time (t + 1) = Variables Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then Context Stack at time (t + 1) = Context Stack at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then Expression Stack at time (t + 1) = [ ]
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then Python Object Store at time (t + 1) = Python Object Store at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then Class Map at time (t + 1) = Class Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = pair ("while", while_line)
then Control Map at time (t + 1) = Control Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = pair ("if", if_value)
then the line at time (t + 1) = i
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = pair ("if", if_value)
then the tab at time (t + 1) = j - 1
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = pair ("if", if_value)
then Expression Stack at time (t + 1) = [ ]
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = pair ("if", if_value)
then Variables Map at time (t + 1) = Variables Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = pair ("if", if_value)
then Context Stack at time (t + 1) = Context Stack at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = pair ("if", if_value)
then Class Map at time (t + 1) = Class Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- number of lines = i - 1
- value at (j - 1) in map (Control Map at time t) = pair ("if", if_value)
then Control Map at time (t + 1) = Control Map at time t
(link)if the following are true:
- Parameters List at time t = [ ]
- Expression Stack at time t = [ [ ], [ [ function call with name: name and arguments: args, ys ], rest ] ]
- there is a function named name with parameters params at line line
then Control Map at time (t + 1) = [ entry 0: (pair ("function", name)), [ ] ]
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
if expr:
- Expression Stack at time t = [ [ ], [ ] ]
- Value Stack at time t = [ [ True, [ ] ], [ ] ]
then Control Map at time (t + 1) = result of storing (pair ("if", True)) at key: j in map: (Control Map at time t)
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
if expr:
- Expression Stack at time t = [ [ ], [ ] ]
- Value Stack at time t = [ [ False, [ ] ], [ ] ]
then Control Map at time (t + 1) = result of storing (pair ("if", False)) at key: j in map: (Control Map at time t)
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
elif test:
- value at j in map (Control Map at time t) = pair ("if", False)
- Expression Stack at time t = [ ]
then Expression Stack at time (t + 1) = [ [ expr, [ ] ], [ ] ]
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
elif test:
- value at j in map (Control Map at time t) = pair ("if", False)
- Expression Stack at time t = [ ]
then Value Stack at time (t + 1) = [ [ ], [ ] ]
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
elif test:
- value at j in map (Control Map at time t) = pair ("if", False)
- Expression Stack at time t = [ ]
then the line at time (t + 1) = i
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
elif test:
- value at j in map (Control Map at time t) = pair ("if", False)
- Expression Stack at time t = [ ]
then the tab at time (t + 1) = j
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
elif test:
- value at j in map (Control Map at time t) = pair ("if", False)
- Expression Stack at time t = [ ]
then Variables Map at time (t + 1) = Variables Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
elif test:
- value at j in map (Control Map at time t) = pair ("if", False)
- Expression Stack at time t = [ ]
then Control Map at time (t + 1) = Control Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
elif test:
- value at j in map (Control Map at time t) = pair ("if", False)
- Expression Stack at time t = [ ]
then Python Object Store at time (t + 1) = Python Object Store at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
elif test:
- value at j in map (Control Map at time t) = pair ("if", False)
- Expression Stack at time t = [ ]
then Context Stack at time (t + 1) = Context Stack at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
elif test:
- value at j in map (Control Map at time t) = pair ("if", True)
- Expression Stack at time t = [ ]
then the line at time (t + 1) = i + 1
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
elif test:
- value at j in map (Control Map at time t) = pair ("if", True)
- Expression Stack at time t = [ ]
then the tab at time (t + 1) = j
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
elif test:
- value at j in map (Control Map at time t) = pair ("if", True)
- Expression Stack at time t = [ ]
then Variables Map at time (t + 1) = Variables Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
elif test:
- value at j in map (Control Map at time t) = pair ("if", True)
- Expression Stack at time t = [ ]
then Control Map at time (t + 1) = Control Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
elif test:
- value at j in map (Control Map at time t) = pair ("if", True)
- Expression Stack at time t = [ ]
then Python Object Store at time (t + 1) = Python Object Store at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
elif test:
- value at j in map (Control Map at time t) = pair ("if", True)
- Expression Stack at time t = [ ]
then Context Stack at time (t + 1) = Context Stack at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
elif expr:
- Expression Stack at time t = [ [ ], [ ] ]
- Value Stack at time t = [ [ True, [ ] ], [ ] ]
then Control Map at time (t + 1) = result of storing (pair ("if", True)) at key: j in map: (Control Map at time t)
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
else:
- value at j in map (Control Map at time t) = pair ("if", False)
then the line at time (t + 1) = i + 1
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
else:
- value at j in map (Control Map at time t) = pair ("if", False)
then the tab at time (t + 1) = j + 1
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
else:
- value at j in map (Control Map at time t) = pair ("if", True)
then the line at time (t + 1) = i + 1
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j =
else:
- value at j in map (Control Map at time t) = pair ("if", True)
then the tab at time (t + 1) = j
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("if", if_value)
then the line at time (t + 1) = i
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("if", if_value)
then the tab at time (t + 1) = j - 1
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("if", if_value)
then Variables Map at time (t + 1) = Variables Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("if", if_value)
then Context Stack at time (t + 1) = Context Stack at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("if", if_value)
then Python Object Store at time (t + 1) = Python Object Store at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("if", if_value)
then Class Map at time (t + 1) = Class Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab k = s
- k < j
- value at (j - 1) in map (Control Map at time t) = pair ("if", if_value)
then Control Map at time (t + 1) = Control Map at time t
(link)if the following are true:
- the line at time t = i
- the tab at time t = j
- statement at line i, tab j = "while" statement with condition (function call with name: name and arguments: args)
- Expression Stack at time t = [ [ ], [ ] ]
- Value Stack at time t = [ [ True, [ ] ], [ ] ]
then Control Map at time (t + 1) = result of storing (pair ("while", i)) at key: j in map: (Control Map at time t)
(link)if entry_key = key, then output of function delete_entry where input key is key, map is [ pair (entry_key, value), remaining ], and processed is kvs = result of dumping kvs to remaining
(link)if not (entry_key = key), then output of function delete_entry where input key is key, map is [ pair (entry_key, value), remaining ], and processed is kvs = output of function delete_entry where input key is key, map is remaining, and processed is [ pair (entry_key, value), kvs ]
(link)if the following are true:
- not (left = value)
- not (right = value)
then output of the find_neighbors function where the input graph is [ pair (left, right), rest ], node is value, and children are result = output of the find_neighbors function where the input graph is rest, node is value, and children are result
(link)if left = value, then output of the find_neighbors function where the input graph is [ pair (left, right), rest ], node is value, and children are result = output of the find_neighbors function where the input graph is rest, node is value, and children are [ right, result ]
(link)if right = value, then output of the find_neighbors function where the input graph is [ pair (left, right), rest ], node is value, and children are result = output of the find_neighbors function where the input graph is rest, node is value, and children are [ left, result ]
(link)if left = value, then output of the find_neighbors function where the input graph is [ edge (left, right, weight), rest ], node is value, and children are result = output of the find_neighbors function where the input graph is rest, node is value, and children are [ pair (right, weight), result ]
(link)if right = value, then output of the find_neighbors function where the input graph is [ edge (left, right, weight), rest ], node is value, and children are result = output of the find_neighbors function where the input graph is rest, node is value, and children are [ pair (left, weight), result ]
(link)if tree tree contains value = False, then output of the separate_nodes function where the input tree is tree, the nodes are [ pair (value, weight), rest ], the existing group is exist, and the new group is new = output of the separate_nodes function where the input tree is tree, the nodes are rest, the existing group is exist, and the new group is [ pair (value, weight), new ]
(link)if index of value value in tree = index, then output of the separate_nodes function where the input tree is tree, the nodes are [ pair (value, weight), rest ], the existing group is exist, and the new group is new = output of the separate_nodes function where the input tree is tree, the nodes are rest, the existing group is [ pair (index, weight), exist ], and the new group is new
(link)if the following are true:
- the element at index child_i of stack tree = node (child_value, child_d, child_prev)
- distance + weight < child_d
- result of storing (node (child_value, (distance + weight), index)) at index child_i of stack tree = updated
then result of updating nodes [ pair (child_i, weight), rest ] in tree tree with parent index index and parent distance distance = result of updating nodes rest in tree updated with parent index index and parent distance distance
(link)if the following are true:
- the element at index child_i of stack tree = node (child_value, child_d, child_prev)
- distance + weight > child_d
then result of updating nodes [ pair (child_i, weight), rest ] in tree tree with parent index index and parent distance distance = result of updating nodes rest in tree tree with parent index index and parent distance distance
(link)if the following are true:
- ((length of stack tree) - 1) - index = back_i
- the element at index back_i of stack tree = node (value, distance, previous)
- result of splitting pairs into nodes that exist in the tree tree and new nodes = pair (exists, new)
- result of updating nodes exists in tree tree with parent index index and parent distance distance = updated
then result of adding or updating children pairs of the node at backwards index index in tree tree = result of pushing nodes new into tree updated where parent is index and parent distance is distance
(link)
Comments
Please log in to add comments