Proof: Substitution in the Middle
Let's prove the following theorem:
if a + b = c, then ((x + a) + b) + y = (x + c) + y
    
    
    
    Proof:
  
      
      Given
      
    
    
      
  
  
| 1 | a + b = c | 
|---|
| # | Claim | Reason | 
|---|---|---|
| 1 | x + (a + b) = x + c | if a + b = c, then x + (a + b) = x + c | 
| 2 | (x + a) + b = x + (a + b) | (x + a) + b = x + (a + b) | 
| 3 | (x + a) + b = x + c | if (x + a) + b = x + (a + b) and x + (a + b) = x + c, then (x + a) + b = x + c | 
| 4 | ((x + a) + b) + y = (x + c) + y | if (x + a) + b = x + c, then ((x + a) + b) + y = (x + c) + y | 
Comments
Please log in to add comments