Proof: Get Begin Expr Params 35

Let's prove the following theorem:

if the following are true:
  • expression state at time 35 = "begin_expr"
  • the expression at time 35 = self."last_name" = last_name
  • arguments stack at time 35 = [ ]

then arguments stack at time 36 = [ [ last_name, [ ] ], [ ] ]

Proof:

View as a tree | View dependent proofs | Try proving it

Given
1 expression state at time 35 = "begin_expr"
2 the expression at time 35 = self."last_name" = last_name
3 arguments stack at time 35 = [ ]
Proof Table
# Claim Reason
1 arguments stack at time (35 + 1) = [ [ last_name, [ ] ], arguments stack at time 35 ] if expression state at time 35 = "begin_expr" and the expression at time 35 = self."last_name" = last_name, then arguments stack at time (35 + 1) = [ [ last_name, [ ] ], arguments stack at time 35 ]
2 [ [ last_name, [ ] ], arguments stack at time 35 ] = [ [ last_name, [ ] ], [ ] ] if arguments stack at time 35 = [ ], then [ [ last_name, [ ] ], arguments stack at time 35 ] = [ [ last_name, [ ] ], [ ] ]
3 arguments stack at time (35 + 1) = [ [ last_name, [ ] ], [ ] ] if arguments stack at time (35 + 1) = [ [ last_name, [ ] ], arguments stack at time 35 ] and [ [ last_name, [ ] ], arguments stack at time 35 ] = [ [ last_name, [ ] ], [ ] ], then arguments stack at time (35 + 1) = [ [ last_name, [ ] ], [ ] ]
4 35 + 1 = 36 35 + 1 = 36
5 arguments stack at time (35 + 1) = arguments stack at time 36 if 35 + 1 = 36, then arguments stack at time (35 + 1) = arguments stack at time 36
6 arguments stack at time 36 = [ [ last_name, [ ] ], [ ] ] if arguments stack at time (35 + 1) = arguments stack at time 36 and arguments stack at time (35 + 1) = [ [ last_name, [ ] ], [ ] ], then arguments stack at time 36 = [ [ last_name, [ ] ], [ ] ]

Comments

Please log in to add comments