Proof: Do Stack At Unchanged 64
Let's prove the following theorem:
if the following are true:
- expression state at time 64 = "call_returned"
- stack at time 64 = [ ]
then stack at time 65 = [ ]
Proof:
Given
1 | expression state at time 64 = "call_returned" |
---|---|
2 | stack at time 64 = [ ] |
# | Claim | Reason |
---|---|---|
1 | stack at time (64 + 1) = stack at time 64 | if expression state at time 64 = "call_returned", then stack at time (64 + 1) = stack at time 64 |
2 | stack at time (64 + 1) = [ ] | if stack at time (64 + 1) = stack at time 64 and stack at time 64 = [ ], then stack at time (64 + 1) = [ ] |
3 | 64 + 1 = 65 | 64 + 1 = 65 |
4 | stack at time (64 + 1) = stack at time 65 | if 64 + 1 = 65, then stack at time (64 + 1) = stack at time 65 |
5 | stack at time 65 = [ ] | if stack at time (64 + 1) = stack at time 65 and stack at time (64 + 1) = [ ], then stack at time 65 = [ ] |
Comments
Please log in to add comments