Transitive Property of Equality Variation 2
Angle Symmetry Example 2
Distance Property 2
Distance Property 1
Collinear Then 180
Subtract Both Sides
Add Term to Both Sides 6
Subtract Both Sides 2
Add Term to Both Sides 7
Transitive Property of Equality Variation 1
Vertical Angles
Angle Addition Theorem
Collinear Angles Property 9
Collinear Angles B
Exterior Angle
Exterior Angle B
Collinear Angles Property 10
Collinear Angles Property 3
Collinear Angles Property 3 B
Collinear Angles Property 3 C
alternate interior angles then parallel
ParallelThenAIA
Parallelthenaiashort
Parallel Then Aia Short Mirror
Angle Symmetry 4
Angle Symmetry Example
If Parallelogram Diagonal Then Congruent Triangles
If Parallelogram Then Sides Congruent B
If Parallelogram Then Sides Congruent B2
Square is Equilateral
If Parallelogram Then Sides Congruent
Transitive Property of Equality Variation 3
Distance Property 5
Square is Equilateral 2
Square is Equilateral 3
Distance Property 6
Congruent Triangles to Angles
Aiathenparallelshort
Congruent Triangles to Angles 2
Parallel Then Parallelogram
If Sides Congruent Then Parallelogram
If Sides Congruent Then Parallelogram 2
If Sides Congruent Then Parallelogram 3
If Equilateral Then Rhombus
Square is Rhombus
Parallel Then Aia Short Mirror 3
Equal Angles
Angle Symmetry 2
Angle Symmetry 3
Parallel Then Aia Short 3
Angle Symmetry Property 5
Triangles Inside Rhombus
Sides of Rhombus Congruent 4
Equal Angles 2
Diagonal Bisects Rhombus 2
Parallel Then Aia 2
Converse of the Supplementary Angles Theorem
Commutative Property Example 2
Commutative Property Variation 1
Substitution 2
Substitution 8
Substitution Example 10
Supplementary Then 180
Parallel Then Interior Supplementary
Paralleltheninteriorshort
Subtraction Example 2
Add Number to Both Sides
Add Number to Both Sides 2
Rectangle Right Angles 2
Angle Addition Theorem 2
Substitute 2
Multiplicative Identity 2
Distributive Property 4
Multiplicative Property of Equality Variation 1
Addition Theorem
Double
Divide Both Sides
Multiplicative Property of Equality Variation 2
Division is Commutative
Associative Property
Divide Each Side
Reduce Addition 2
Square Example 2

Proof: Transitive Property of Equality Variation 1

Let's prove the following theorem:

if the following are true:
  • a = c
  • b = c

then a = b

This theorem is very similar to the Transitive Property of Equality. The only difference is that the terms on the second condition are switched.

We begin the proof by listing any givens or assumptions, which are statements that we can assume are true.

Each row in the proof table contains a claim, which is a statement that can be derived from properties, givens, and other derived statements. The reason tells us how or why we were able to make the claim.

Proof:

View as a tree | View dependent proofs | Try proving it

Given
1 a = c
2 b = c
Proof Table
# Claim Reason
1 c = b if b = c, then c = b
2 a = b if a = c and c = b, then a = b
Previous Lesson Next Lesson

Comments

Please log in to add comments