Proof: Angle Addition Theorem
Let's prove the following theorem:
if point X lies in interior of ∠ABC, then m∠ABC = (m∠ABX) + (m∠XBC)
Proof:
Given
| 1 | point X lies in interior of ∠ABC |
|---|
| # | Claim | Reason |
|---|---|---|
| 1 | ((m∠ABX) + (m∠XBC) < 180) or ((m∠ABX) + (m∠XBC) = 180) | if point X lies in interior of ∠ABC, then ((m∠ABX) + (m∠XBC) < 180) or ((m∠ABX) + (m∠XBC) = 180) |
| 2 | m∠ABC = (m∠ABX) + (m∠XBC) | if ((m∠ABX) + (m∠XBC) < 180) or ((m∠ABX) + (m∠XBC) = 180), then m∠ABC = (m∠ABX) + (m∠XBC) |
Comments
Please log in to add comments