Proof: Angle Addition Theorem

Let's prove the following theorem:

if point X lies in interior of ∠ABC, then m∠ABC = (m∠ABX) + (m∠XBC)

A C B X

Proof:

View as a tree | View dependent proofs | Try proving it

Given
1 point X lies in interior of ∠ABC
Proof Table
# Claim Reason
1 ((m∠ABX) + (m∠XBC) < 180) or ((m∠ABX) + (m∠XBC) = 180) if point X lies in interior of ∠ABC, then ((m∠ABX) + (m∠XBC) < 180) or ((m∠ABX) + (m∠XBC) = 180)
2 m∠ABC = (m∠ABX) + (m∠XBC) if ((m∠ABX) + (m∠XBC) < 180) or ((m∠ABX) + (m∠XBC) = 180), then m∠ABC = (m∠ABX) + (m∠XBC)
Previous Lesson Next Lesson

Comments

Please log in to add comments