Proof: Collinear Angles Property 10
Let's prove the following theorem:
if m∠ABC = 180, then m∠XCB = m∠XCA
Proof:
Given
1 | m∠ABC = 180 |
---|
# | Claim | Reason |
---|---|---|
1 | m∠BCX = m∠ACX | if m∠ABC = 180, then m∠BCX = m∠ACX |
2 | m∠BCX = m∠XCB | m∠BCX = m∠XCB |
3 | m∠ACX = m∠XCA | m∠ACX = m∠XCA |
4 | m∠XCB = m∠ACX | if m∠BCX = m∠XCB and m∠BCX = m∠ACX, then m∠XCB = m∠ACX |
5 | m∠XCB = m∠XCA | if m∠XCB = m∠ACX and m∠ACX = m∠XCA, then m∠XCB = m∠XCA |
Comments
Please log in to add comments