Proof: Midpoint Then 180
Let's prove the following theorem:
if M is the midpoint of line AB, then (m∠AMX) + (m∠XMB) = 180
    
    
    
    Proof:
  
      
      Given
      
    
    
      
  
  
| 1 | M is the midpoint of line AB | 
|---|
| # | Claim | Reason | 
|---|---|---|
| 1 | m∠AMB = 180 | if M is the midpoint of line AB, then m∠AMB = 180 | 
| 2 | m∠AMB = (m∠AMX) + (m∠XMB) | if m∠AMB = 180, then m∠AMB = (m∠AMX) + (m∠XMB) | 
| 3 | (m∠AMX) + (m∠XMB) = 180 | if m∠AMB = (m∠AMX) + (m∠XMB) and m∠AMB = 180, then (m∠AMX) + (m∠XMB) = 180 | 
Comments
Please log in to add comments