Proof: Similar Distances 2

Let's prove the following theorem:

if △ABC ∼ △XYZ, then (distance CB) / (distance ZY) = (distance BA) / (distance YX)

A B C X Y Z

Proof:

View as a tree | View dependent proofs | Try proving it

Given
1 ABC ∼ △XYZ
Proof Table
# Claim Reason
1 (distance CB) / (distance ZY) = (distance CA) / (distance ZX) if △ABC ∼ △XYZ, then (distance CB) / (distance ZY) = (distance CA) / (distance ZX)
2 (distance CA) / (distance ZX) = (distance BA) / (distance YX) if △ABC ∼ △XYZ, then (distance CA) / (distance ZX) = (distance BA) / (distance YX)
3 (distance CB) / (distance ZY) = (distance BA) / (distance YX) if (distance CB) / (distance ZY) = (distance CA) / (distance ZX) and (distance CA) / (distance ZX) = (distance BA) / (distance YX), then (distance CB) / (distance ZY) = (distance BA) / (distance YX)

Comments

Please log in to add comments