Proof: Outer Triangle Theorem
Let's prove the following theorem:
if distance XZ = distance YZ and m∠XYP = 180, then distance ZP > distance ZX
    
    
Proof:
Proof Table
| # | Claim | Reason | 
|---|---|---|
| 1 | m∠YXZ = m∠XYZ | if distance XZ = distance YZ, then m∠YXZ = m∠XYZ | 
| 2 | m∠ZYX = m∠YXZ | if m∠YXZ = m∠XYZ, then m∠ZYX = m∠YXZ | 
| 3 | m∠ZYX > m∠ZPY | if m∠XYP = 180, then m∠ZYX > m∠ZPY | 
| 4 | m∠YXZ > m∠ZPY | if m∠ZYX > m∠ZPY and m∠ZYX = m∠YXZ, then m∠YXZ > m∠ZPY | 
| 5 | m∠ZXY > m∠ZPY | if m∠YXZ > m∠ZPY, then m∠ZXY > m∠ZPY | 
| 6 | m∠ZXP > m∠ZPX | if m∠ZXY > m∠ZPY and m∠XYP = 180, then m∠ZXP > m∠ZPX | 
| 7 | distance ZP > distance ZX | if m∠ZXP > m∠ZPX, then distance ZP > distance ZX | 
Comments
Please log in to add comments