Proof: Vertical Angles 3
Let's prove the following theorem:
if m∠WPY = 180 and m∠XPZ = 180, then m∠YPX = m∠WPZ
Proof:
Proof Table
# | Claim | Reason |
---|---|---|
1 | m∠YPW = 180 | if m∠WPY = 180, then m∠YPW = 180 |
2 | (m∠YPX) + (m∠XPW) = 180 | if m∠YPW = 180, then (m∠YPX) + (m∠XPW) = 180 |
3 | m∠YPX = 180 + ((m∠XPW) ⋅ (-1)) | if (m∠YPX) + (m∠XPW) = 180, then m∠YPX = 180 + ((m∠XPW) ⋅ (-1)) |
4 | (m∠XPW) + (m∠WPZ) = 180 | if m∠XPZ = 180, then (m∠XPW) + (m∠WPZ) = 180 |
5 | m∠WPZ = 180 + ((m∠XPW) ⋅ (-1)) | if (m∠XPW) + (m∠WPZ) = 180, then m∠WPZ = 180 + ((m∠XPW) ⋅ (-1)) |
6 | m∠YPX = m∠WPZ | if m∠YPX = 180 + ((m∠XPW) ⋅ (-1)) and m∠WPZ = 180 + ((m∠XPW) ⋅ (-1)), then m∠YPX = m∠WPZ |
Comments
Please log in to add comments