Proof: Exterior Angle Equal to Sum of Nonadjacent
Let's prove the following theorem:
if m∠XYZ = 180, then m∠WYZ = (m∠WXY) + (m∠YWX)
Proof:
Given
| 1 | m∠XYZ = 180 |
|---|
| # | Claim | Reason |
|---|---|---|
| 1 | ((m∠WXY) + (m∠XYW)) + (m∠YWX) = 180 | ((m∠WXY) + (m∠XYW)) + (m∠YWX) = 180 |
| 2 | (m∠XYW) + (m∠WYZ) = 180 | if m∠XYZ = 180, then (m∠XYW) + (m∠WYZ) = 180 |
| 3 | (m∠WXY) + (m∠YWX) = 180 + ((m∠XYW) ⋅ (-1)) | if ((m∠WXY) + (m∠XYW)) + (m∠YWX) = 180, then (m∠WXY) + (m∠YWX) = 180 + ((m∠XYW) ⋅ (-1)) |
| 4 | m∠WYZ = 180 + ((m∠XYW) ⋅ (-1)) | if (m∠XYW) + (m∠WYZ) = 180, then m∠WYZ = 180 + ((m∠XYW) ⋅ (-1)) |
| 5 | m∠WYZ = (m∠WXY) + (m∠YWX) | if m∠WYZ = 180 + ((m∠XYW) ⋅ (-1)) and (m∠WXY) + (m∠YWX) = 180 + ((m∠XYW) ⋅ (-1)), then m∠WYZ = (m∠WXY) + (m∠YWX) |
Comments
Please log in to add comments