Proof: Triangles Sum to 180

Let's prove the following theorem:

((m∠YWX) + (m∠WXY)) + (m∠XYW) = 180

W Y Z X P

Proof:

View as a tree | View dependent proofs | Try proving it

Assumptions
1 ZX || WY
2 m∠ZXP = 180
Proof Table
# Claim Reason
1 m∠ZXW = m∠XWY if ZX || WY, then m∠ZXW = m∠XWY
2 XP || WY if ZX || WY and m∠ZXP = 180, then XP || WY
3 PX || YW if XP || WY, then PX || YW
4 m∠PXY = m∠XYW if PX || YW, then m∠PXY = m∠XYW
5 point W lies in interior of ∠ZXY if ZX || WY, then point W lies in interior of ∠ZXY
6 m∠ZXY = (m∠ZXW) + (m∠WXY) if point W lies in interior of ∠ZXY, then m∠ZXY = (m∠ZXW) + (m∠WXY)
7 m∠ZXP = (m∠ZXY) + (m∠YXP) if m∠ZXP = 180, then m∠ZXP = (m∠ZXY) + (m∠YXP)
8 (m∠ZXY) + (m∠YXP) = 180 if m∠ZXP = (m∠ZXY) + (m∠YXP) and m∠ZXP = 180, then (m∠ZXY) + (m∠YXP) = 180
9 ((m∠ZXW) + (m∠WXY)) + (m∠YXP) = 180 if (m∠ZXY) + (m∠YXP) = 180 and m∠ZXY = (m∠ZXW) + (m∠WXY), then ((m∠ZXW) + (m∠WXY)) + (m∠YXP) = 180
10 m∠YXP = m∠XYW if m∠PXY = m∠XYW, then m∠YXP = m∠XYW
11 ((m∠ZXW) + (m∠WXY)) + (m∠XYW) = 180 if ((m∠ZXW) + (m∠WXY)) + (m∠YXP) = 180 and m∠YXP = m∠XYW, then ((m∠ZXW) + (m∠WXY)) + (m∠XYW) = 180
12 (m∠ZXW) + (m∠WXY) = (m∠XWY) + (m∠WXY) if m∠ZXW = m∠XWY, then (m∠ZXW) + (m∠WXY) = (m∠XWY) + (m∠WXY)
13 ((m∠XWY) + (m∠WXY)) + (m∠XYW) = 180 if ((m∠ZXW) + (m∠WXY)) + (m∠XYW) = 180 and (m∠ZXW) + (m∠WXY) = (m∠XWY) + (m∠WXY), then ((m∠XWY) + (m∠WXY)) + (m∠XYW) = 180
14 m∠XWY = m∠YWX m∠XWY = m∠YWX
15 ((m∠YWX) + (m∠WXY)) + (m∠XYW) = 180 if ((m∠XWY) + (m∠WXY)) + (m∠XYW) = 180 and m∠XWY = m∠YWX, then ((m∠YWX) + (m∠WXY)) + (m∠XYW) = 180

Comments

Please log in to add comments