Proof: Triangles Sum to 180
Let's prove the following theorem:
((m∠YWX) + (m∠WXY)) + (m∠XYW) = 180
Proof:
Assumptions
1 | ZX || WY |
---|---|
2 | m∠ZXP = 180 |
# | Claim | Reason |
---|---|---|
1 | m∠ZXW = m∠XWY | if ZX || WY, then m∠ZXW = m∠XWY |
2 | XP || WY | if ZX || WY and m∠ZXP = 180, then XP || WY |
3 | PX || YW | if XP || WY, then PX || YW |
4 | m∠PXY = m∠XYW | if PX || YW, then m∠PXY = m∠XYW |
5 | point W lies in interior of ∠ZXY | if ZX || WY, then point W lies in interior of ∠ZXY |
6 | m∠ZXY = (m∠ZXW) + (m∠WXY) | if point W lies in interior of ∠ZXY, then m∠ZXY = (m∠ZXW) + (m∠WXY) |
7 | m∠ZXP = (m∠ZXY) + (m∠YXP) | if m∠ZXP = 180, then m∠ZXP = (m∠ZXY) + (m∠YXP) |
8 | (m∠ZXY) + (m∠YXP) = 180 | if m∠ZXP = (m∠ZXY) + (m∠YXP) and m∠ZXP = 180, then (m∠ZXY) + (m∠YXP) = 180 |
9 | ((m∠ZXW) + (m∠WXY)) + (m∠YXP) = 180 | if (m∠ZXY) + (m∠YXP) = 180 and m∠ZXY = (m∠ZXW) + (m∠WXY), then ((m∠ZXW) + (m∠WXY)) + (m∠YXP) = 180 |
10 | m∠YXP = m∠XYW | if m∠PXY = m∠XYW, then m∠YXP = m∠XYW |
11 | ((m∠ZXW) + (m∠WXY)) + (m∠XYW) = 180 | if ((m∠ZXW) + (m∠WXY)) + (m∠YXP) = 180 and m∠YXP = m∠XYW, then ((m∠ZXW) + (m∠WXY)) + (m∠XYW) = 180 |
12 | (m∠ZXW) + (m∠WXY) = (m∠XWY) + (m∠WXY) | if m∠ZXW = m∠XWY, then (m∠ZXW) + (m∠WXY) = (m∠XWY) + (m∠WXY) |
13 | ((m∠XWY) + (m∠WXY)) + (m∠XYW) = 180 | if ((m∠ZXW) + (m∠WXY)) + (m∠XYW) = 180 and (m∠ZXW) + (m∠WXY) = (m∠XWY) + (m∠WXY), then ((m∠XWY) + (m∠WXY)) + (m∠XYW) = 180 |
14 | m∠XWY = m∠YWX | m∠XWY = m∠YWX |
15 | ((m∠YWX) + (m∠WXY)) + (m∠XYW) = 180 | if ((m∠XWY) + (m∠WXY)) + (m∠XYW) = 180 and m∠XWY = m∠YWX, then ((m∠YWX) + (m∠WXY)) + (m∠XYW) = 180 |
Comments
Please log in to add comments